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Abstract: Many real-world applications involve situations where different physical phenomena 
acting on very different time scales occur simultaneously. The partial differential equations 
(PDEs) governing such situations are categorized as “stiff” PDEs. Stiffness is a challenging 
property of differential equations (DEs) that prevents conventional explicit numerical integrators 
from handling a problem efficiently. For such cases, stability (rather than accuracy) 
requirements dictate the choice of time step size to be very small. Considerable effort in coping 
with stiffness has gone into developing time-discretization methods to overcome many of the 
constraints of the conventional methods. Our attention has been focused on the explicit 
Exponential Time Differencing (ETD) integrators that are designed to solve stiff semi-linear 
problems, we employ asymptotic stability criteria to confirm the efficiency of Exponential Time 
Differencing Runge-Kutta method with necessary approximations. 
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----------------⌂----------------- 
INTRODUCTION 

 
 

Various problems in the world can be solved 
when they are modeled and presented in the 
form of an ordinary differential equation or 
partial differential equation. However, there 
are times where different phenomena acting 
on very different time scales occur 
simultaneously introducing a parameter 
called stiff parameter which sometimes 
makes it difficult to solve. All differential 
equations with this property are said to be a 

stiff differential equation. Differential 
equations can be grouped into two types 
namely partial differential equations (PDE) 
and ordinary differential equations (ODE). 

A partial differential equation (PDE) is a 
mathematical relation which involves 
functions of multiple variables and their 
partial derivatives. PDEs are used to 
formulate (and hence to aid in the solution 
of) problems involving functions of several 
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variables, and they arise in a variety of 
important fields. For example, in physics, 
they are used to describe the propagation of 
sound or heat, electrostatics, 
electrodynamics, fluid flow and elasticity, 
whilst in finance; they have been used in the 
modeling of the pricing of financial options. 
Accordingly, the study of their properties 
and methods of solution has received a great 
deal of attention. The earliest detection of 
stiffness in differential equations in the 
digital computer era, by Curtiss, et al (1952), 
was apparently far in advance of its time. 
They named the phenomenon and spotted 
the nature of stiffness (stability requirement 
dictates the choice of the step size to be very 
small). To resolve the problem they 
recommended possible methods such as the 
Backward Differentiation Formula for 
numerical integration. In 1963, Dahlquist 
defined the problem and demonstrated the 
difficulties that standard differential 
equation solvers have with stiff differential 
equations. 

For a numerical method which makes use of 
derivative values, the fast component 
continues to influence the solution, and as a 
consequence, the selection of the step size in 
the numerical solution is problematic. This 
is because the required step size is governed 
not only by behavior of the solution as a 
whole, but also by that of the rapidly 
varying transient which does not persist in 
the solution that we are monitoring. 

In reality, numerical values occurring in 
nature are frequently sure as to cause 
stiffness. Therefore, a realistic 
representation of a natural system using a 

differential equation is likely to encounter 
this phenomenon. 

Practical application of stiff PDEs can be 
found in almost can be found in almost all 
technical disciplines. For example 
mathematical models of electrical circuits, 
mechanical systems, chemical processes, 
etc. are described by systems of 
PDEs.According to Lambers (assessed on 
20/04/2013), differential equation of the 
form 𝑦𝑦’ = 𝑓𝑓(𝑡𝑡,𝑦𝑦)  is said to be stiff if its 
exact solution 𝑦𝑦(𝑡𝑡)  includes a term that 
decays exponentially to zero as t increases, 
but whose derivatives are much greater in 
magnitude than the term itself. An example 
of such a term is 𝑒𝑒−𝑐𝑐𝑐𝑐 , where c is a large, 
positive constant, because its 𝑘𝑘𝑡𝑡ℎ derivative 
is 𝑐𝑐𝑘𝑘𝑒𝑒−𝑐𝑐𝑐𝑐.because of the factor of 𝑒𝑒−𝑐𝑐𝑐𝑐, this 
derivative decays to zero much more slowly 
than 𝑒𝑒−𝑐𝑐𝑐𝑐  as t increases. Garfinkel, et al 
(1977), described stiffness as a property of 
differential equation that makes it slow and 
expensive to solve by numerical methods. It 
is a result of the numerical coefficients in 
the differential equation (so that there is too 
wide a spread between the fastest and 
slowest elements).  

According to Moler (assessed on 
14/04/2013, stiffness is a subtle, difficult, 
and important-concept in the numerical 
solution of ordinary differential equations. It 
depends on the differential equation, the 
initial conditions and the numerical method. 
Dictionary definitions of the word “stiff” 
involve terms like “not easily bent”, “rigid”, 
and “stubborn”. We are concerned with a 
computational version of these properties. 
An ordinary differential equation problem is 
stiff if the solution being sought is varying 
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slowly, but there are nearby solutions that 
vary rapidly, so the numerical method must 
take small steps to obtain satisfactory 
results. Stiffness is an efficiency issue. If we 
weren’t concerned with how much time a 
computation takes, we wouldn’t be 
concerned about stiffness. Nonstiff methods 
can solve stiff problems; they just take a 
long time to do it.  

Dahlquist et al (1973), defined a stiff system 
as one containing very fast components as 
well as very slow components. They 
represent coupled physical systems having 
components varying with very different time 
scales: that is they are systems having some 
components varying much more rapidly than 
the others. (Liniger,1972).  
Exponential Time Differencing (ETD) 
schemes are time integration methods that 
can be efficiently combined with special 
approximations to provide accurate smooth 

solutions for stiff or highly oscillatory semi-
linear PDEs.  

Azure (2013), Derived the various 
algorithms and stability expressions for ETD 
and ETDRK, and asymptotic stability 
criteria was  used to establish the stability of 
the selected ETD schemes.   

According to Du (2004), Exponential Time 
Differencing Schemes are time integration 
methods that can be efficiently combined 
with spatial spectral approximations to 
provide very high resolution to the smooth 
solutions of some linear and non-linear 
partial differential equations. We study in 
this paper the stability properties of some 
exponential time differencing schemes. We 
also present their application to the 
numerical solution of the scalar Allen-Cahn 
equation in two and three dimensional 
spaces.  

 
THE GOVERNING EQUATION 

We begin by giving in detail, the algorithm 
derivation for the explicit ETD scheme.  

Consider stiff semi-linear PDEs that can be 
written in the form 

𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝐿𝐿𝜕𝜕(𝑡𝑡)
+  𝐹𝐹(𝜕𝜕(𝑡𝑡), 𝑡𝑡)                                                                                (2.0.6) 

Where the linear operator 𝐿𝐿 contains higher-
order spatial derivatives than those 
contained in the nonlinear operator 𝐹𝐹, and is 
mainly the term responsible for stiffness. 
For problems of spatially periodic boundary 
conditions, we use Fourier spectral methods 

to discretize the spatial derivations of 
(2.0.6), and hence obtain a stiff system of 
coupled ODEs in time t  

𝑑𝑑𝜕𝜕(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐿𝐿𝜕𝜕(𝑡𝑡)
+  𝐹𝐹(𝜕𝜕(𝑡𝑡), 𝑡𝑡)                                                                                    (  

The linear part L of the system is 
represented by a diagonal matrix, and F 
represents the action of te nonlinear operator 
on u on the grid.  

To derive ETD methods, we consider for 
simplicity a single model of a stiff ODE.  
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𝑑𝑑𝜕𝜕(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑐𝑐𝜕𝜕(𝑡𝑡)
+  𝐹𝐹(𝜕𝜕(𝑡𝑡), 𝑡𝑡)                                                                                     (2.0.8) 

Where the stiffness parameter 𝑐𝑐  is either 
large, negative and real, or large and 
imaginary, or complex with large, negative 
real part and 𝐹𝐹(𝜕𝜕(𝑡𝑡), 𝑡𝑡)  is the nonlinear 
forcing term. 

 

Exponential Time Differencing Methods 

To derive the step ETD schemes, we 
multiply (2.0.3) through by the integrating 
factor 𝑒𝑒−𝑐𝑐𝑐𝑐 and then integrate the equation 
over a single time step from  

𝑡𝑡 = 𝑡𝑡𝑛𝑛 𝑡𝑡𝑡𝑡 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡 , 

  𝜕𝜕(𝑡𝑡𝑛𝑛+1)

= 𝜕𝜕(𝑡𝑡𝑛𝑛)𝑒𝑒𝑐𝑐∆𝑐𝑐℩ � 𝑒𝑒−𝑐𝑐𝑐𝑐
∆𝑐𝑐

0
𝐹𝐹(𝜕𝜕(𝑡𝑡𝑛𝑛 + 𝜏𝜏), 𝑡𝑡𝑛𝑛

+ 𝜏𝜏)𝑑𝑑𝜏𝜏                                  (2.0.9) 

This formula is exact, and the next step is to 
derive approximations to the integral in 
equation (2.0.9). This procedure does not 
introduce an unwanted fast time scale into 
the solution and the schemes can be 
generalized to arbitrary order.  

If we apply the Newton Backward 
Difference Formula, using information 
about 𝐹𝐹(𝜕𝜕(𝑡𝑡), 𝑡𝑡) 𝑎𝑎𝑡𝑡 the nth and previous 
time steps, we can write a polynomial 
approximation to 𝐹𝐹(𝜕𝜕(𝑡𝑡𝑛𝑛 + 𝜏𝜏), 𝑡𝑡𝑛𝑛 +
𝜏𝜏) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓  

𝐹𝐹(𝜕𝜕(𝑡𝑡𝑛𝑛) + 𝜏𝜏), 𝑡𝑡𝑛𝑛 + 𝜏𝜏) ≈ 𝐺𝐺𝑛𝑛(𝑡𝑡𝑛𝑛 + 𝜏𝜏)

= � (−1)𝑚𝑚
𝑠𝑠−1

𝑚𝑚=0
(−

𝑐𝑐
∆𝑐𝑐)∇𝑚𝑚𝐺𝐺𝑛𝑛(𝑡𝑡𝑛𝑛),          (2.1.0) 

Where  ∇  is the backward difference 
operator defined as follows 

∇𝑚𝑚𝐺𝐺𝑛𝑛(𝑡𝑡𝑛𝑛) = �(−1)𝑘𝑘
𝑚𝑚

𝑘𝑘=0

�𝑓𝑓𝑘𝑘�𝐺𝐺𝑛𝑛−𝑘𝑘(𝑡𝑡𝑛𝑛−𝑘𝑘)

≈�(−1)𝑘𝑘
𝑚𝑚

𝑘𝑘=0

�𝑓𝑓𝑘𝑘�𝐹𝐹(𝜕𝜕(𝑡𝑡𝑛𝑛−𝑘𝑘),         (2.1.1) 

And  

𝑓𝑓! �− ∧
   𝑓𝑓� = (− ∧)(− ∧ −1) … (− ∧ −𝑓𝑓

+ 1),𝑓𝑓 = 1, … . , 𝑠𝑠 

(Note that 0!�−Λ0 � = 1). If we substitute the 
approximation (2.1.0) in the integrand 
(2.0.9), we get 

𝜕𝜕(𝑡𝑡𝑛𝑛+1) − 𝜕𝜕(𝑡𝑡𝑛𝑛)𝑒𝑒𝑐𝑐∆𝑐𝑐

≈ ∆𝑡𝑡 � (−1)𝑚𝑚
𝑠𝑠−1

𝑚𝑚=0

� 𝑒𝑒𝑐𝑐∆t(1−∧)
1

0
�− ∧

   𝑓𝑓�𝑑𝑑

∧ ∇mGn(tn)      (2.1.2) 

Where Λ = 𝑐𝑐
∆𝑐𝑐

.  we will indicate the integral 
in (2.1.2) by  

𝑔𝑔𝑚𝑚 = (−1)𝑚𝑚 ∫ 𝑒𝑒𝑐𝑐∆𝑐𝑐(1−∧) �− ∧
𝑓𝑓 �1

0 𝑑𝑑⋀,                                                             

(2.1.3) 

And then calculate the 𝑔𝑔𝑚𝑚 by bringing in the 
generating function. For  
 𝑧𝑧𝑧𝑧𝑧𝑧, |𝑧𝑧| < 1, we define the generating 
function 

Γ (𝑧𝑧) =
∑ 𝑔𝑔𝑚𝑚𝑧𝑧𝑚𝑚∞
𝑚𝑚=0 =

∫ 𝑒𝑒𝑐𝑐∆𝑐𝑐(1−∧) ∑ �− ∧
  𝑓𝑓�  (−𝑧𝑧)𝑚𝑚𝑑𝑑 ∧=∞

𝑚𝑚=𝑜𝑜
1
0

∫ 𝑒𝑒𝑐𝑐△𝑐𝑐(1−∧)(1 − 𝑧𝑧)−⋀ 1
0 𝑑𝑑 ⋀ , 
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  = 𝑒𝑒𝑐𝑐∆𝑡𝑡(1−𝑧𝑧−𝑒𝑒−𝑐𝑐∆𝑡𝑡)
(1−𝑧𝑧)(𝑐𝑐△𝑐𝑐+log (1−𝑧𝑧)

                                                                                    

(2.1.4) 

Rearranging (3.9) to form  

(𝑐𝑐∆𝑡𝑡 + log(1 − 𝑧𝑧))Γ (𝑧𝑧)
=  𝑒𝑒𝑐𝑐∆𝑐𝑐 − (1 − 𝑧𝑧)−1, 

And expanding as a power series in z  

�𝑐𝑐∆𝑡𝑡 − 𝑧𝑧 −
𝑧𝑧2

2
−
𝑧𝑧2

3
−⋯� (𝑔𝑔𝑜𝑜 + 𝑔𝑔1𝑧𝑧

+ 𝑔𝑔2𝑧𝑧.
2 … )

= 𝑒𝑒𝑐𝑐∆𝑐𝑐 − 1 − 𝑧𝑧 − 𝑧𝑧2 − 𝑧𝑧3

− ⋯, 

We can find a recurrence relation for 
the 𝑔𝑔𝑚𝑚 for m≥0 by equating like powers of z  

𝑐𝑐∆𝑡𝑡𝑔𝑔𝑜𝑜 

= 𝑒𝑒𝑐𝑐∆1

− 1                                                                                                     (2.1.4𝑎𝑎) 

𝑐𝑐∆𝑡𝑡𝑔𝑔𝑚𝑚+1 + 1 = 𝑔𝑔𝑚𝑚 + 1
2
𝑔𝑔𝑚𝑚−1 + 1

3
𝑔𝑔𝑚𝑚−2 +

⋯ 1
𝑚𝑚+1

𝑔𝑔0 = ∑ 1
𝑚𝑚+1−𝑘𝑘

𝑚𝑚
𝑘𝑘=0               (2.1.5)                    

Having determined 𝑔𝑔𝑚𝑚, the ETD schemes 
(2.1.1) then can be given in explicit forms. 
Substituting (2.1.0) and (2.1.3) in (2.1.2), we 
deduce the general generating formula of 
ETD schemes or orders.   

𝜕𝜕𝑛𝑛+1
= 𝜕𝜕𝑛𝑛𝑒𝑒𝑐𝑐∆𝑐𝑐

+ ∆𝑡𝑡 � 𝑔𝑔𝑚𝑚�(−1)𝑘𝑘 �𝑓𝑓𝑘𝑘 �𝐹𝐹𝑛𝑛−𝑘𝑘

𝑚𝑚

𝑘𝑘=0

                                              (2.1.6)
𝑠𝑠−1

𝑚𝑚=0

 

Where 𝜕𝜕𝑛𝑛 and 𝐹𝐹𝑛𝑛 denote the numerical 
approximation to 
𝜕𝜕(𝑡𝑡𝑛𝑛) 𝑎𝑎𝑖𝑖𝑑𝑑 𝐹𝐹(𝜕𝜕(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛) respectively, and the gm are given by (2.1.5) 

ETD Runge-Kutta Schemes 

Cox et al (2002), constructed a second-order ETD 
Runge-Kutta method, analogous to the “improved 
Euler” method given as follows. 

ETD2RK1 Scheme 

Putting 𝑠𝑠 = 1 in equation (2.1.6) give  

𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛𝑒𝑒𝑐𝑐∆𝑐𝑐 +
(𝑒𝑒𝑐𝑐∆𝑐𝑐 − 1)𝐹𝐹𝑛𝑛

𝑐𝑐
,         

 𝑙𝑙𝑒𝑒𝑡𝑡 𝑎𝑎𝑛𝑛 ≈ 𝜕𝜕𝑛𝑛+1,𝑡𝑡ℎ𝑒𝑒𝑖𝑖 𝑖𝑖𝑡𝑡 𝑖𝑖𝑓𝑓𝑖𝑖𝑙𝑙𝑖𝑖𝑒𝑒𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 

𝑎𝑎𝑛𝑛
= 𝜕𝜕𝑛𝑛𝑒𝑒𝑐𝑐∆𝑐𝑐

+
(𝑒𝑒𝑐𝑐∆𝑐𝑐 − 1)𝐹𝐹𝑛𝑛

𝑐𝑐
                                                                                       

The term 𝑎𝑎𝑛𝑛 approximate the value of 𝜕𝜕 at 𝑡𝑡𝑛𝑛 +
∆𝑡𝑡. the next step is to 
approximate 

 F in the interval 𝑡𝑡𝑛𝑛 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑛𝑛+1, with 

F=𝐹𝐹𝑛𝑛 + (𝑐𝑐−𝑐𝑐𝑛𝑛)
∆𝑐𝑐/𝑗𝑗

(𝐹𝐹 �𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑐𝑐
𝑗𝑗
� − 𝐹𝐹𝑛𝑛) + 0(∆𝑡𝑡2), 

And substitute into (2.1.1) to give the ETD2RK1 
scheme  

 𝜕𝜕𝑛𝑛+1 = 𝑎𝑎𝑛𝑛 + (𝑒𝑒𝑐𝑐∆𝑐𝑐 − 𝑐𝑐∆𝑡𝑡 − 1)(𝐹𝐹(𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡) −
𝐹𝐹𝑛𝑛)/(𝑐𝑐2∆𝑡𝑡)                         (2.1.9) 

ETD2RK2 scheme 

In a similar way, we can also form an ETD2RK2 
scheme analogous to the “modified Euler” method. 
The first step 

𝑎𝑎𝑛𝑛 = 𝜕𝜕𝑛𝑛𝑒𝑒𝑐𝑐∆𝑐𝑐/𝑗𝑗 + �𝑒𝑒𝑐𝑐∆𝑐𝑐/𝑗𝑗 − 1�𝐹𝐹𝑛𝑛/𝑐𝑐. 

Is formed by taking half a step of (2.1.8); then use 
the approximation 

F=𝐹𝐹𝑛𝑛 + (𝑐𝑐−𝑐𝑐𝑛𝑛)
∆𝑐𝑐/𝑗𝑗

(𝐹𝐹 �𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑐𝑐
𝑗𝑗
� − 𝐹𝐹𝑛𝑛) + 0(∆𝑡𝑡2), 
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In the interval [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡] in (2.1.1) to deduce the 
general ETD2RK2 scheme as follows 

𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛𝑒𝑒𝑐𝑐∆𝑐𝑐  + ��(𝑐𝑐∆𝑡𝑡 − 2)𝑒𝑒𝑐𝑐∆𝑐𝑐 + 𝑐𝑐∆𝑡𝑡 +

2�𝐹𝐹𝑛𝑛 + 2(𝑒𝑒𝑐𝑐∆𝑐𝑐 − 𝑐𝑐∆𝑡𝑡 − 1)𝐹𝐹 �𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑐𝑐
2
� /

(𝑐𝑐2∆𝑡𝑡)� (2.2.0) 

In fact, there is a one-parameter family of such 
𝐸𝐸𝐸𝐸𝐷𝐷2𝑧𝑧𝑅𝑅𝐽𝐽  schemes. For j∈ 𝑧𝑧+,  one can start with 
any fraction 1/j of ∆𝑡𝑡 for the first step (2.1.8) which 
gives 

𝑎𝑎𝑛𝑛 = 𝜕𝜕𝑛𝑛𝑒𝑒𝑐𝑐∆𝑐𝑐/𝑗𝑗 + �𝑒𝑒𝑐𝑐∆𝑐𝑐/𝑗𝑗 − 1�𝐹𝐹𝑛𝑛/𝑐𝑐. 

The term 𝑎𝑎𝑛𝑛 approximate the value of u at 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡/
𝑗𝑗. Next use the approximation  

F=𝐹𝐹𝑛𝑛 + (𝑐𝑐−𝑐𝑐𝑛𝑛)
∆𝑐𝑐/𝑗𝑗

(𝐹𝐹 �𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑐𝑐
𝑗𝑗
� − 𝐹𝐹𝑛𝑛) + 0(∆𝑡𝑡2), 

In the interval [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡] in (2.1.1) to deduce the 
general 𝐸𝐸𝐸𝐸𝐷𝐷2𝑧𝑧𝑅𝑅𝐽𝐽  schemes as follows 

𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛𝑒𝑒𝑐𝑐∆𝑐𝑐 + ��(𝑐𝑐∆𝑡𝑡 − 𝑗𝑗)𝑒𝑒𝑐𝑐∆𝑐𝑐 + (𝑗𝑗 − 1)𝑐𝑐∆𝑡𝑡 +

𝑗𝑗� 𝐹𝐹𝑛𝑛 + 𝑗𝑗(𝑒𝑒𝑐𝑐∆𝑐𝑐 − 𝑐𝑐∆𝑡𝑡 − 1)𝐹𝐹 �𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑐𝑐
𝑗𝑗
� /

(𝑐𝑐2∆𝑡𝑡)� . 
     

 

 Stability Analysis 

To determine whether an exponential time 
differencing method is asymptotically stable, 
considering the problem: 

𝑑𝑑𝜕𝜕(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑐𝑐𝜕𝜕(𝑡𝑡) + λ𝜕𝜕(𝑡𝑡) 

Given the problem above, the asymptotic stability 
of the schemes can be determined as follows; 

Stability of ETD2RK1 Scheme 

           Equation (2.1.9) can be written as; 

             𝑢𝑢𝑛𝑛+1
𝑢𝑢𝑛𝑛

= 𝑒𝑒𝑐𝑐∆𝑐𝑐 + �𝑒𝑒𝑐𝑐∆𝑡𝑡−1�𝐹𝐹𝑛𝑛
𝑐𝑐𝑢𝑢𝑛𝑛

+(𝑒𝑒𝑐𝑐∆𝑐𝑐 − 𝑐𝑐∆𝑡𝑡 −

1)(𝐹𝐹(𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡)/𝑐𝑐2∆𝑡𝑡𝜕𝜕𝑛𝑛 

           Substituting 𝐹𝐹𝑛𝑛 = λ𝜕𝜕𝑛𝑛 into the above equation gives 

             𝑢𝑢𝑛𝑛+1
𝑢𝑢𝑛𝑛

= 𝑒𝑒𝑐𝑐∆𝑐𝑐 + �𝑒𝑒𝑐𝑐∆𝑡𝑡−1�λ𝑢𝑢𝑛𝑛
𝑐𝑐𝑢𝑢𝑛𝑛

+(𝑒𝑒𝑐𝑐∆𝑐𝑐 − 𝑐𝑐∆𝑡𝑡 −

1)(𝐹𝐹(𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡)/𝑐𝑐2∆𝑡𝑡𝜕𝜕𝑛𝑛              (2.2.1) 

Putting 𝑥𝑥 = λ∆𝑡𝑡,𝑦𝑦 = 𝑐𝑐∆𝑡𝑡 𝑎𝑎𝑖𝑖𝑑𝑑 𝑓𝑓  =   𝑢𝑢𝑛𝑛+1
𝑢𝑢𝑛𝑛

  into the 

above equation gives; 

𝑓𝑓 = 𝑒𝑒𝑦𝑦 + (𝑒𝑒𝑦𝑦 − 1)
λ𝜕𝜕𝑛𝑛
𝑐𝑐𝜕𝜕𝑛𝑛

+ �
(𝑒𝑒𝑦𝑦 − 𝑦𝑦 − 1)(𝑒𝑒𝑦𝑦 − 1)

𝑦𝑦2
� 𝑥𝑥2 

𝑓𝑓 = 𝑒𝑒𝑦𝑦 + (𝑒𝑒𝑦𝑦 − 1)
𝑥𝑥
𝑦𝑦

+ �
(𝑒𝑒𝑦𝑦 − 𝑦𝑦 − 1)(𝑒𝑒𝑦𝑦 − 1)

𝑦𝑦2
� 𝑥𝑥2 

 𝑓𝑓 = 𝑒𝑒𝑦𝑦 + �𝑒𝑒
𝑦𝑦−1
𝑦𝑦
� + �(𝑒𝑒𝑦𝑦−𝑦𝑦−1)(𝑒𝑒𝑦𝑦−1)

𝑦𝑦2
� 𝑥𝑥2                                                           

(2.2.1a)     If  

𝑓𝑓 = 𝑒𝑒𝑦𝑦 + �
𝑒𝑒𝑦𝑦 − 1
𝑦𝑦 � + �

(𝑒𝑒𝑦𝑦 − 𝑦𝑦 − 1)(𝑒𝑒𝑦𝑦 − 1)
𝑦𝑦2

� 𝑥𝑥2

< 1                                        (2.2.1𝑏𝑏) 

Then ETD2RK1 is asymptotically stable. 

 

 Stability of ETD2RK2 Scheme 

Equation (2.2.0) can be written as  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 7, July-2019                                                                   5 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org 

   
𝜕𝜕𝑛𝑛+1
𝜕𝜕𝑛𝑛

= 𝑒𝑒𝑐𝑐∆𝑐𝑐

+
��(𝑐𝑐∆𝑡𝑡 − 2)𝑒𝑒𝑐𝑐∆𝑐𝑐 + 𝑐𝑐∆𝑡𝑡 + 2�𝐹𝐹𝑛𝑛 + 2(𝑒𝑒𝑐𝑐∆𝑐𝑐 − 𝑐𝑐∆𝑡𝑡 − 1)𝐹𝐹(𝑎𝑎𝑛𝑛, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡) + ∆𝑡𝑡/2�

𝜕𝜕𝑛𝑛𝑐𝑐2∆𝑡𝑡
 

Let 𝑓𝑓 = 𝑢𝑢𝑛𝑛+1
𝑢𝑢𝑛𝑛

, 𝑥𝑥 = λ∆𝑡𝑡 𝑎𝑎𝑖𝑖𝑑𝑑 𝑦𝑦 = 𝑐𝑐∆𝑡𝑡 

  𝑓𝑓 = 𝑒𝑒𝑦𝑦 + �2(𝑒𝑒𝑦𝑦−𝑦𝑦−1)𝑒𝑒
𝑦𝑦
2+(𝑦𝑦−2)𝑒𝑒𝑦𝑦+𝑦𝑦+2
𝑦𝑦2

� 𝑥𝑥 +

�
2(𝑒𝑒𝑦𝑦−𝑦𝑦−1)�𝑒𝑒

𝑦𝑦
2−1�

𝑦𝑦3
� 𝑥𝑥2                               (2.2.2𝑎𝑎)        if 

               𝑓𝑓 = 𝑒𝑒𝑦𝑦 + �
2(𝑒𝑒𝑦𝑦 − 𝑦𝑦 − 1)𝑒𝑒𝑦𝑦/2 + (𝑦𝑦 − 2)𝑒𝑒𝑦𝑦 + 𝑦𝑦 + 2

𝑦𝑦2
� 𝑥𝑥

+ �
2(𝑒𝑒𝑦𝑦 − 𝑦𝑦 − 1)�𝑒𝑒𝑦𝑦/2 − 1�

𝑦𝑦3
� 𝑥𝑥2

< 1   (2.2.2𝑏𝑏) 

Then ETD2RK2 is asymptotically stable. 

      

ANALYSIS OF RESULTS 

Du et al (2009), gave the parameter values 
for 𝑐𝑐, 𝜆𝜆 and ∆𝑡𝑡. These values were adopted 
in this study to compute the values of 𝑥𝑥 and 
𝑦𝑦 given that 𝑥𝑥 = 𝜆𝜆∆𝑡𝑡  and 𝑦𝑦 = 𝑐𝑐∆𝑡𝑡. 

Following the first condition in section 
(2.0.8), where 𝜆𝜆  is real and 𝑐𝑐  is fixed, 
negative and both 𝜆𝜆 and 𝑐𝑐 are purely real; 
the values of 𝑥𝑥 and 𝑦𝑦 were computed using 
the adopted values for the parameters 𝑐𝑐, 𝜆𝜆 
and ∆𝑡𝑡 and represented in a tabular form 
below. 

 

Table 3.1:  𝑥𝑥 and 𝑦𝑦 values given that 𝑐𝑐 is fixed and negative and 𝜆𝜆 is Real   
               and both are purely real. 

∆𝑡𝑡 𝑐𝑐 𝜆𝜆 𝑥𝑥 𝑦𝑦 

1 × 10−3 −0.1 1 × 10−4 1 × 10−7 −1 × 10−4 

2 × 10−3 −0.1 1 × 10−5 2 × 10−8 −2 × 10−4 

3 × 10−3 −0.1 1 × 10−6 3 × 10−9 −3 × 10−4 

4 × 10−3 −0.1 1 × 10−7 4 × 10−10 −4 × 10−4 

5 × 10−3 −0.1 1 × 10−8 5 × 10−11 −5 × 10−4 

6 × 10−3 −0.1 1 × 10−9 6 × 10−12 −6 × 10−4 

 

It can be observed from Table 3.1 above that as the values of ∆𝑡𝑡 and  increase and c remain 

constant values of x and y decreases accordingly. Because of the negative values of c, all values 
obtained for y were also negative. 
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Table 3.2:  𝒙𝒙 and 𝒚𝒚 Values Given Is Changing and Negative and  𝜆𝜆 Is Complex and              
  Both 𝑐𝑐 And 𝜆𝜆 Are Real 

∆𝑡𝑡 𝑐𝑐 𝜆𝜆 𝑥𝑥 𝑦𝑦 

1 × 10−3 −0.1 1 × 10−4 1 × 10−7 −1 × 10−4 

2 × 10−3 −0.2 1 × 10−5 2 × 10−8 −4 × 10−4 

3 × 10−3 −0.3 1 × 10−6 3 × 10−9 −9 × 10−4 

4 × 10−3 −0.4 1 × 10−7 4 × 10−10 −1.6 × 10−3 

5 × 10−3 −0.5 1 × 10−8 5 × 10−11 −2.5 × 10−3 

6 × 10−3 −0.6 1 × 10−9 6 × 10−12 −3.6 × 10−3 

 

Values from table 4.2 show that given the 
condition that c is changing and negative 𝜆𝜆 
is complex and both c and 𝜆𝜆 are real, both 
the values of 𝑥𝑥 𝑎𝑎𝑖𝑖𝑑𝑑 𝑦𝑦  decrease as ∆𝑡𝑡 
increases. 

Computations Of The r Values Of ETD2RK1 
and ETD2RK2 Schemes 

From tables (3.1), the computed values of 
𝑥𝑥 𝑎𝑎𝑖𝑖𝑑𝑑 𝑦𝑦  were used to carry out the 

computations for the r values of ETD2RK1 
and ETD2RK2. 

Considering the condition that 𝜆𝜆 is complex 
and c is fixed and negative and both 𝜆𝜆and 𝑐𝑐 
are purely real, equations (2.1.6), (2.2.1) 
and (2.2.1a) computes the 𝑓𝑓  values for 
ETD2RK1 while, equations (2.1.6), (2.2.2) 
and (2.2.2a) computes the r values for 
ETD2RK2. Below is a summary of the 
computed values for r for the schemes. 
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Table 3.3:          The 𝒓𝒓 Values of the Schemes when Parameter 𝒄𝒄 fixed and Negative and λ is 
complex 

                                              |𝒓𝒓| 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝑶𝑶𝑶𝑶 𝑻𝑻𝑻𝑻𝑽𝑽 𝑽𝑽𝑺𝑺𝑻𝑻𝑽𝑽𝑺𝑺𝑽𝑽𝑽𝑽 

𝑽𝑽𝑻𝑻𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝑽𝑽𝑻𝑻𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.9999 0.9999 

0.9998 0.9998 

0.9997 0.9997 

0.9996 0.9996 

0.9995 0.9995 

                            0.9994 0.9994 

            

 

 

 

From Table 3.3, all values corresponding to 
the ETDRK schemes are less than one 

indicating that all Schemes are 
asymptotically stable at these points 

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

0.9993 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 1

Series1
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studied. It can also be observed that at each 
∆𝑡𝑡 all schemes have the same values and 
this is true for all values of ∆𝑡𝑡. Hence none 
of the schemes can be said to be more 
asymptotically stable. Again descending 

down the table, the values of 𝑓𝑓 
corresponding to the schemes decreases, 
hence making the schemes more 
asymptotically stable. 

Table 3.4:              The r Values of the Schemes when Parameters c is changing   
                     and Negative and λ is Complex      

𝑽𝑽𝑻𝑻𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝑽𝑽𝑻𝑻𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.9999 0.9999 

0.9996 0.9996 

0.9991 0.9991 

0.9980401 0.9980401 

0.997503 0.997503 

0.996406 0.996406 

 

 

 

 

 

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

1 2 3 4 5 6

Series1

Series2
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Summary 

From Table 3.1, given that 1× 10−3 ≤ ∆t ≤
6 × 10−3, c is fixed and negative and λ is 
complex, results obtained for 𝑥𝑥 =
λ∆𝑡𝑡 𝑎𝑎𝑖𝑖𝑑𝑑 𝑦𝑦 = 𝑐𝑐∆t showed that both values  
of x and y increased for every increase in ∆𝑡𝑡, 
however all values of y were negative 

From Table 3.2, all values corresponding to 
ETD2RK1 and ETD2RK2 schemes are less 
than one indicating that all schemes are 
asymptotically stable at these points studied. 
It can also be observed that at each ∆𝑡𝑡 all 
schemes have the same values and this is 
true for all values of ∆𝑡𝑡. Hence none of the 
schemes can be said to be more 
asymptotically stable than the order. Again 
descending down the table, the values of r 
corresponding to the schemes decrease, 
hence making the schemes more stable. 

    

CONCLUSION  

This research suggests that the comparison 
of the asymptotic stability of ETD2RK1 and 
ETD2RK2 schemes in solving the stiff semi-
linear differential equation (2.1.6) was 
properly executed. This was made possible 
when some parameter c, λ and ∆𝑡𝑡   were 
adopted and used for computations. 

To ensure that the first objective was met, 
ETD2RK1 and ETD2RK2 schemes were 
used to solve the stiff semi-linear differential 

equation (2.1.6) to obtain the asymptotic 
stability expressions  (2.2.1b) and (2.2.2b).  

The second objective suggested the 
following conclusions;  

• When the parameter c is negative 
and changing, and λ is complex, all 
the schemes are asymptotically 
stable, however as ∆t increases and 
the parameter c is changing, the 
corresponding |𝑓𝑓|  values of the 
schemes decreases accordingly 
making them more asymptotically 
stable. 

• At each ∆t, the |𝑓𝑓| values of all the 
schemes are the same, that is; at ∆t=
0.001,  |𝑓𝑓|  value of ETD2RK1 is 
0.9999 and ETD2RK2 is 0.9999 
hence as far as asymptotic stability 
is concern, none of the schemes 
studied is more stable than the other, 
therefore ETD2RK1 and ETD2RK2 
are efficient schemes for solving 
stiff semi-linear differential 
equations. 
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